--
록하트 마르티넬리 변수
1949년 록하트(Lockhart)와 마르티넬리(Martinelli)는
이상(two-phase)영역에서 압력강하를 예측하고자, 기상과 액상의 비율을 고려하는 Martinelli parameter (X_tt)를 도입하였다.
채널(channel) 안에서 기상(gas phase)과 액상(liquid phase)는 점도가 다르기 때문에 흐르는 속도가 달라진다.
따라서 채널 안에서는 2개의 상으로 분리되어 흐른다고 생각하고, 채널 단면에서 각 상의 속도를 고려한다.
1) 액상의 Reynolds 수가 4000 이상일때,
,
,
여기서, x는 건도(quality)를 뜻하고, 원형관일 경우 B는 16의 상수를 가진다.
이상유동의 압력강하를 계산하는 방법은
Lockhart-Martinelli correlation
An alternate approach to calculate two-phase pressure drop is the separated-phases model.
In this model, the phases are considered to be flowing separately in the channel, each occupying a given fraction of the channel cross section and each with a given velocity. It is obvious the predicting of the void fraction is very important for these methods. Numerous methods are available for predicting the void fraction.
The method of Lockhart and Martinelli is the original method that predicted the two-phase frictional pressure drop based on a friction multiplicator for the liquid-phase, or the vapor-phase:
∆pfrict = Φltt2 . ∆pl (liquid-phase ∆p)
∆pfrict = Φgtt2 . ∆pg (vapor-phase ∆p)
The single-phase friction factors of the liquid fl and the vapor fg are based on the single phase flowing alone in the channel, in either viscous laminar (v) or turbulent (t) regimes.
∆pl can be calculated classically, but with application of (1-x)2 in the expression and ∆pg with application of vapor quality x2 respectively.
The two-phase multipliers Φltt2 and Φgtt2 are equal to:
where Xtt is the Martinelli’s parameter defined as:
and the value of C in these equations depends on the flow regimes of the liquid and vapor. These values are in the following table.
The Lockhart-Martinelli correlation has been found to be adequate for two-phase flows at low and moderate pressures. For applications at higher pressures, the revised models of Martinelli and Nelson (1948) and Thom (1964) are recommended.
Correlations for void fraction and frictional pressure drop (Lockhart and Martinelli, 1949)
--
__
2019. 12. 16 작성
2020. 01. 12 추가 작성'Engineer's Background' 카테고리의 다른 글
쉐우드 수 Sherwood number (1) | 2020.01.12 |
---|---|
킬턴-콜번 유사성 Chilton and Colburn J-factor (1) | 2019.12.19 |
자코비안 표기법 Jacobian method (열역학) (0) | 2019.12.15 |
음해법 Implicit method vs. 양해법 Explicit method (0) | 2019.12.14 |
에커트 수 Eckert number, 브랑크만 수 Brinkman number (0) | 2018.02.25 |